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Abstract  
 
AI in breast cancer detection and diagnosis has been advancing over the past 30 years.  These advances 
have led to developments in various breast imaging interpretation tasks, such as risk assessment, 
detection, diagnosis, prognosis, and therapy response, as well as in multi-omics disease discovery.  
Translation to FDA-cleared clinical care has occurred for aiding in detection (CADe) and diagnosis 
(CADx).  The expansion of the computer-extraction of features and machine learning, typically found 
within CAD systems, is now referred to as radiomics.  Radiomics aim to provide quantitative features 
for association & discovery studies with clinical data, histopathology data, and other “-omics” data, 
such as genomics, proteomics, etc.  Studies of radiomics also aim to develop predictive models 
utilizing the image-based features for precision medicine.  Deep learning methods are also rapidly 
advancing and being applied to image interpretation tasks.  These various AI methods are expected to 
augment radiologists’ interpretation, thus, making clinical decision making more effective and efficient. 
 
 
 
  



Introduction  
 
Within the field of artificial intelligence (AI) there is the subfield of machine learning, which includes 
deep learning.  Artificial intelligence in breast cancer detection and diagnosis has been advancing over 
the past 30 years (Refs. 1-3).  These advances have led to developments in various breast imaging 
interpretation tasks, such as risk assessment, detection, diagnosis, prognosis, and therapy response, as 
well as in multi-omics disease discovery.  Image interpretation by humans is hindered by the presence 
of structure noise (camouflaging normal anatomical background), incomplete visual search patterns, 
fatigue, distractions, the assessment of subtle and/or complex disease states, vast amounts of image 
data, and physical image quality.  The expansion of the computer-extraction of features and machine 
learning, typically found within CAD systems, is now referred to as radiomics.  Radiomics aim to 
provide quantitative features for association & discovery studies with clinical data, histopathology data, 
and other “-omics” data, such as genomics, proteomics, etc.  Studies of radiomics also aim to develop 
predictive models utilizing the image-based features for precision medicine.  Deep learning methods 
are also rapidly advancing and being applied to image interpretation tasks.  These various AI methods 
are expected to augment radiologists’ interpretation, thus, making clinical decision making more 
effective and efficient.  This paper gives a brief overview of the areas of CAD and recent progress. 
 
CADe 
 
Breast CADe involves a localization task to be performed by the computer serving as a second opinion 
to radiologists in screening mammography programs, leaving the patient management decisions to the 
radiologist. Over the past three decades, computer-aided detection in screening mammography has 
been developed, with it receiving FDA approval in 1996 and subsequent clinical use (Refs. 4, 5).  
Breast CADe systems have progressed in various ways including the use of symbols of varying 
intensity in order to indicate how likely the computer algorithm estimates that a computer detection is 
an actual cancer.  Other CADe systems have been investigated with radiologists’ prompts to potential 
lesions, with the computer then giving an estimate of the likelihood that the region is actually suspect 
of being cancer.  More recently deep learning methods have been investigated in which the input is the 
mammographic image with an output of an estimate of the probability that the image contains a 
suspect breast cancer.  These methods have also advanced through challenges, such as the Dream 
Challenge (Ref. 6). 
 
Many deep learning methods utilize computational neural networks (CNNs).  CNNs can be used for 
classification, filtering, segmentation, and feature extraction.  The earliest journal paper of CNNs in 
medical imaging was published in 1994, in which CNNs were used in the computerized detection of 
microcalcifications for screening mammography (Ref. 7).  The CNN served as a filter to enhance the 
signal of microcalcifications in the processed mammograms so that subsequent computer vision 
methods could be used to extract potential microcalcifications (Ref. 7).  Others also used CNNs on 
mammograms, such as in the task of distinguishing between biopsy-proven masses and normal tissue 
on mammograms (Ref. 8).  CNNs continue to be investigated for CADe (Ref. 22). 
 
CADx 
 
Once a suspect lesion is found, by either a radiologist or computer, the computer can further process 
the image in order to estimate the likelihood that the lesion is actually cancerous or not.  Here the task 
is one of classification, and not localization.  With computer-aided diagnosis (CADx), the computer 
characterizes the lesion in question, leaving the decision on patient management to the radiologist. 
 



Within CADx systems, the computer might be programed to segment the suspect lesion from the breast 
parenchymal background. The segmented lesion then undergoes feature extraction in which 
characteristics such as lesion size, shape, margin morphology, texture, and kinetics are automated 
extracted (Refs. 9-12, 39).  [Figure 1] These features, i.e., radiomics, are then merged using some 
classifier into a lesion signature, whose value is related to a likelihood of malignancy.  More recent 
systems are being focused on distinguishing between benign lesions and specific cancer subtypes, such 
as the Luminal A subtype (Ref.13). 
 
Various commercial systems have been developed over the past ten years to analyze breast magnetic 
resonance images (MRIs) and characterize specific aspects of the suspect lesion, such as the kinetics 
on dynamic contrast enhancement MRI (DCE-MRI). (Ref. 14). Kinetic characterizations of the lesion 
are extracted in order to indicate the uptake and washout of the contrast agent in the blood stream. 
 
In 2017, the first CADx system was cleared by the FDA as a machine learning system to assist 
radiologists in breast cancer diagnosis (Ref. 15).  This system includes various computer-extracted 
characterizations of the lesion, which are subsequently merged into a tumor signature score that is 
related to a likelihood of malignancy for use by radiologists, who then make the final decision on 
patient managment. 
 
Rapid advances in deep learning have also been applicable to breast cancer diagnosis. (Refs. 16-23).  
Since databases are still limited, transfer learning has been used in CADx using pretrained CNNs 
with and without “fine tuning”.  Basically, CNN features are extracted, i.e., transferred, from 
pretrained CNNs (i.e., pre-trained), where the information in the CNN layers serve as features.  For 
example, a CNN trained on natural scenes (dogs, cars, houses), could be used from which to extract 
features when breast images are fed through the trained CNN.  (Refs. 20, 21). Another form of transfer 
learning is fine tuning, which involves freezing early layers of a pretrained CNN, and then training the 
latter layers specifically for a new task.   
 
Recently, transfer learning was conducted for the diagnosis of breast tumors on mammography, 
ultrasound, and breast MRI (Refs. 20, 21).   Investigators compared a CADx system with conventional 
computer-extracted features, a CADx system with CNN-extracted features, and a fusion classifier 
trained on both types of features.  The complimentary aspects of both conventional and deep-learned 
tumor features in breast cancer classification were demonstrated with the fusion classifier yielding the 
performance level.  [Figure 2] 
 
Given the limited number of cases for training a CNN, it is beneficial, at times, to input preprocessed 
images to enhance the network.  For example, investigators compared the CNN performance in CADx 
when using post-contrast MRIs, post-contrast subtraction MRIs, and maximum intensity projection 
images (MIP) as input to CNNs in an attempt to incorporate both the spatial and temporal aspects of 
DCE-MRI (Ref. 23).  In the study, it was found that MIPs yielded statistically significant performance 
results [Figure 3]. 
 
Beyond CADx:  Radiomics and Imaging-Genomics (radiogenomics) 
 
While AI of lesion and normal background features has successfully been used for CADe and CADx, 
they also have a growing role in prognosis and assessing response to therapy, as well as in datamining 
for discovery (Refs. 12, 38).  Radiomics, an expansion of computer-aided diagnosis, involves the 
conversion of images to minable data (Refs 3, 24-26).  Basically, a computer method in which images 
are input and numbers are output that characterize the tumor, i.e., image-based phenotypes.   



 
Datamining of the radiomics features without and with other “omics”, such as clinical data, 
histopathology, and genomics, can then be conducted, i.e., imaging-genomics/radiogenomics (Ref. 36). 
For example, in a multi-institutional National Cancer Institute (NCI) collaboration of invasive breast 
carcinomas involving The Cancer Genome Atlas (TCGA) and The Cancer Imaging Archive (TCIA) 
(Refs. 27, 28), investigated associations between breast MRI radiomic features and various clinical, 
molecular, and genomics markers of prognosis and risk of recurrence, including gene expression 
profiles were investigated (Refs. 12, 28-31, 35). 
 
Given the heterogeneity of cancer, both genomics and radiomic studies are being conducted to 
elucidate this characteristic. (Refs. 12, 29, 30).  With breast DCE-MRI, texture of the dynamic contrast 
uptake can yield phenotypes that characterize the heterogeneous aspect of contrast uptake within the 
breast tumor. (Ref. 10) For example, a high value of the texture entropy could signify a more 
heterogeneous uptake pattern within the tumor, thus indicating the heterogeneous nature of 
angiogenesis & treatment susceptibility.   
 
An example of radiomics in predicting a patient’s outcome used the functional tumor volume from 
breast MRI as a predictor of recurrence-free survival on breast cancer patients receiving neoadjuvant 
therapy (Ref. 32, 37). 
 
These image-based phenotypes can be viewed as providing a location-specific “virtual biopsy”, which 
covers the entire tumor, is repeatable, and could be non-invasive.  Virtual biopsies have the potential to 
provide information when an actual biopsy is not practical, such as in screening or for serial “biopsies” 
with multiple imaging exams during cancer treatment to assess response. 
 
The application of AI in medical imaging requires the use of images from routine clinical imaging 
exams, and thus the requirement for harmonization of the imaging exam and/or the image analysis 
methods and features.  Various groups are addressing these aspects of robustness and harmonization,  
such as the Quantitative Imaging Network (QIN) of the NCI (Ref. 33) and the Quantitative Imaging 
Biomarker Alliance (QIBA) of the RSNA (Ref. 34).  
 
Discussion and Summary 
 
More investigations are needed, as imaging datasets become larger and better annotated, and as AI 
algorithms advance in complexity, especially for distinguishing subtle disease states and 
abnormal/normal patterns.  The field is advancing quickly.   
 
In addition, users need to understand that a CNN is not a “black box” as there are methods to assess the 
learned components to understand what in an input image is being enhanced, detected, etc. 
 
AI in CAD and radiology is expected to have a profound clinical impact, alleviating some routine tasks 
from radiologists while simultaneously forcing them to incorporate AI findings into the clinical 
workflow and interpretation for the betterment of patient care. 
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